ABSTRACT

Isolated pulmonary amyloid is a rare form of amyloidosis. The hallmark of amyloid consists of abnormal insoluble proteins that deposit in various locations throughout the body. Within the lungs, amyloid proteins may be deposited in the hilum, trachea, or parenchyma of the lung, either distributed diffusely or in an isolated nodule. These uncommon diagnoses can be easily mistaken for less rare presentations. In the case of isolated pulmonary nodular amyloid, diagnosis of bronchogenic carcinoma, metastatic disease, and focal fungal infections such as tuberculosis and histoplasmosis are considered first. Amyloid is diagnosed only with a tissue sample reviewed by a pathologist using a Congo Red stain demonstrating apple-green birefringence under polarized light. Such tissue samples are made difficult to obtain due to the hard and nodular consistency of the amyloid protein layered in beta-pleated sheets. Confusion of this relatively commonly benign process with more sinister diagnosis of primary or secondary neoplasm can lead to great emotional turmoil for the patient and family. A late diagnosis will also prevent inefficient use of medical resources, money, and time. Increased awareness of the rare presentations of pulmonary amyloid may aid in preventing a lengthy and tumultuous arrival at a proper diagnosis.

KEYWORDS: focal nodular hyperplasia, ruptured tumor, liver resection and radiofrequency ablation

INTRODUCTION

Amyloidosis is a heterogeneous group of diseases in that abnormally folded, insoluble proteins are deposited in extracellular spaces. In each type of amyloidosis, distinct soluble fibril precursor proteins are mis-folded into an abnormal protein conformation of anti-parallel β-pleated sheets. This folding results in the insoluble and stable properties exhibited by amyloid protein deposits. Distribution of these deposits may be diffuse or localized throughout the body, depending on the pathophysiology of the underlying amyloid type. Due to the mass effect of amyloid deposition, the structure and function of the affected organs may be compromised, creating the sequelae of clinical features. Secondary amyloidosis (AA amyloidosis) presents secondary to a multitude of chronic inflammatory conditions, including rheumatoid arthritis, spondyloarthropathy, and inflammatory bowel disease, as well as chronic infections such as tuberculosis, osteomyelitis, bronchiectasis and leprosy. The chronic inflammation leads to an increased production of an acute phase reactant serum amyloid A (AA), a protein that can be measured, reflecting the burden of disease. Other types of amyloid include hereditary and senile forms that are much rarer.

The most common type, primary amyloidosis (AL amyloidosis) is a monoclonal plasma cell dyscrasia leading to
the production of immunoglobulin light chains, that conform into the abnormal protein fibril deposits of amyloid. Common organs involved include the kidney, heart, GI tract, nervous system, and soft tissue. This systemic form of the disease is known to be associated with other β-cell dyscrasias such as multiple myeloma and macroglobulinemia. It has been shown that 88% of patients with systemic AL amyloid have pulmonary involvement. Thus systemic forms of the disease affect the lung, often distributed diffusely throughout the parenchyma.

There are two main anatomical presentations of localized pulmonary amyloid; large airway deposits and parenchymal types, that are further divided into nodular or diffuse subtypes. Amyloid isolated to the parenchyma is given the diagnosis of isolated pulmonary amyloid once investigations have ruled out systemic forms. This distinction is necessary considering the prognosis of systemic forms is much worse; only 10% are expected to be living at 5 years. Isolated forms may not create symptoms at all.

CASE REPORT

A male 78-year-old retired welder, who is a non-insulin dependent diabetic and ex-smoker for approximately 25 years, developed flu-like symptoms, intermittent dull chest pain and cough with no hemoptysis. After the failure of three different antibiotic treatments over a three-month period the patient was sent for a chest x-ray (Figure 1) showing a 5.3 cm mass in the right upper lobe. The patient was informed the mass was likely of a cancerous etiology.

Three weeks later a CT of the chest (Figure 2) and abdomen were attained for staging of the assumed bronchogenic carcinoma. A speculated mass measuring 5.3 cm by 4.6 cm was found in the anterior segment of the right upper lobe. This mass abutted the superior vena cava, but no signs of compression or invasion were noted. There was no sign of destruction of the adjacent bone or distant isolated bony metastasis. Mediastinal lymph nodes were numerous, but the sizes were within normal limits. No metastases to other organs were identified.

A CT guided fine needle aspiration of the nodule (Figure 3) was taken with a 22-gauge needle and sent to pathology for analysis. The specimen showed erythrocytes and mixed inflammatory cells but no evidence of malignancy. The pathologist stated the specimen was adequate for evaluation, but not representative of the anatomical site. A larger tissue sample would be needed for a definitive diagnosis.

Unsatisfied, the patient sought private medical advice. A new chest radiograph and CT showed the mass had not changed in size or morphology since the original discovery two months prior. There were no other notable findings at this time.

The patient’s only symptoms to persist were occasional chest pain and non-productive cough. The patient had not experienced hemoptysis, fevers or chills up to this point. Pulmonary function testing was normal, with FEV1/FCV of 87% and diffusion capacity at 116% of predicted. Although reluctant, the patient allowed pulmonary medicine to make a referral to thoracic surgery. The surgical team discussed the possibility of proceeding with bronchoscopy, mediastinoscopy, and investigations for extrathoracic staging before proceeding with a right thoracotomy, chest wall, and mass resection. Recognizing the gravity of these interventions, the surgeon referred the patient to the cancer clinic for palliative care and radical radiotherapy.

The cancer clinic organized further investigations including a CT of the head, chest, and abdomen, and a bone scan for surveillance of the disease. Pertinent findings included some new calcific nodules within the mass and no further spread of this presumed non-small cell lung cancer.

A referral to interventional radiology was also made approximately five months after the initial chest radiograph. An 18-gauge ultrasound guided lung core biopsy retrieved a specimen which was sent for pathological staining and definitive diagnosis.
including plaques, nodular, cavitated, and calcific forms. The variety of morphological classes creates a difficult entity to diagnose, especially when superimposed infections or unrelated pulmonary pathologies are present.

The rarity of such a diagnosis is exemplified by a study at the Mayo Clinic. Over a thirteen-year period, only 7 cases of isolated amyloidomas were found in the lung. Patients most commonly presented in the 6th decade. Variation in the presentations included sizes ranging from 0.55cm with an average of 3cm. Thirty to fifty percent of cases showed calcifications. Also, cavitations and spiculations have been noted in other cases.

Solitary pulmonary nodular amyloidosis is an uncommon diagnosis. More common conditions that present similarly should be excluded first, such as neoplastic, infectious, or inflammatory conditions. In an event when clinical findings, radiographic appearances, and pathological conclusions are incongruent with these common diagnoses, amyloid of the lung should be considered.

Amyloid proteins are deposited in a protein conformation of anti-parallel β-pleated sheets and have unique properties. When stained with Congo Red, a pathognomonic pattern of apple-green birefringence may be visualized under polarized light. Immunohistochemical staining can further determine the protein type allowing for targeted treatments.

The final diagnosis of amyloidoma of the lung was undoubtedly a surprise to the many clinicians involved in the case discussed. To further classify the diagnosis of an amyloidoma, systemic amyloidosis must be ruled out, since management differs between each subtype.

A regimented diagnostic workup suggested by Shah et al. includes first immunohistochemical staining to determine the protein type. This often involves ruling out secondary AA amyloidosis with a negative test and assigning the presumptive diagnosis of the much more common systemic AL type. In lung tissue, protein typing of this nature is ideal but not always achieved due to its lack of practicality. A diagnosis of

Figure 4. (A) H&E stain of tissue biopsy from right lung mass. No malignant cells were visualized by the pathologist. The sample was sent for further staining including Congo Red. (B) Congo Red stained tissue shows flecks of apple green colored amyloid when visualized through with polarized lens.

Figure 5. Bone scan does not show typical uptake of a suspected neoplasm in the upper right lobe. Amyloid tissue will not show increased uptake of fludeoxyglucose unlike malignancy.

DISCUSSION

Lesser first described amyloidosis of the respiratory tract in 1877, twenty-three years after Rudolf Virchow first described the systemic disorder in 1853. Pulmonary amyloidosis only represents a small group of isolated diseases under the umbrella term Amyloidosis.

The locations of the isolated forms of pulmonary amyloidosis are divided into three main anatomical areas; large airway amyloidosis of the larynx and bronchus, parenchymal pulmonary amyloidosis, and mediastinal amyloid. Variations in the spectrum of the aforementioned amyloid types do exist, including plaques, nodular, cavitated, and calcific forms. The variety of morphological classes creates a difficult entity to diagnose, especially when superimposed infections or unrelated pulmonary pathologies are present.

The rarity of such a diagnosis is exemplified by a study at the Mayo Clinic. Over a thirteen-year period, only 7 cases of isolated amyloidomas were found in the lung. Patients most commonly presented in the 6th decade. Variation in the presentations included sizes ranging from 0.55cm with an average of 3cm. Thirty to fifty percent of cases showed calcifications. Also, cavitations and spiculations have been noted in other cases.

Solitary pulmonary nodular amyloidosis is an uncommon diagnosis. More common conditions that present similarly should be excluded first, such as neoplastic, infectious, or inflammatory conditions. In an event when clinical findings, radiographic appearances, and pathological conclusions are incongruent with these common diagnoses, amyloid of the lung should be considered.

Amyloid proteins are deposited in a protein conformation of anti-parallel β-pleated sheets and have unique properties. When stained with Congo Red, a pathognomonic pattern of apple-green birefringence may be visualized under polarized light. Immunohistochemical staining can further determine the protein type allowing for targeted treatments.

The final diagnosis of amyloidoma of the lung was undoubtedly a surprise to the many clinicians involved in the case discussed. To further classify the diagnosis of an amyloidoma, systemic amyloidosis must be ruled out, since management differs between each subtype.

A regimented diagnostic workup suggested by Shah et al. includes first immunohistochemical staining to determine the protein type. This often involves ruling out secondary AA amyloidosis with a negative test and assigning the presumptive diagnosis of the much more common systemic AL type. In lung tissue, protein typing of this nature is ideal but not always achieved due to its lack of practicality. A diagnosis of
secondary (AA) amyloid is associated with chronic inflammatory
diseases, that should be treated first. Also ruling out commonly
associated plasma cell dyscrasia, such as multiple myeloma and
macroglobulinemia, is accomplished with bone marrow aspirate
as well as urine and serum electrophoresis analysis.9
Alongside the abnormal amyloid fibrils, normal plasma
glycoprotein and serum amyloid P (SAP) are also laid down.4,9
The uptake of this protein is not dependent on the deposition rate
of new amyloid. By radiolabeling SAP, amyloid deposits can be
detected by scintigraphic imaging2, thus providing a complete
body evaluation of amyloid deposits. Solid organs such as liver
and spleen allow for more sensitive localization than with organs
such as the lungs. Thus scintigraphic imaging is a sensitive
method for the evaluation of extra-pulmonary amyloid that may
be associated with established amyloid of the lung.2,8

CONCLUSION
In this case of an isolated pulmonary amyloidosis, the patient lived
with a false presumed diagnosis of a bronchogenic carcinoma for
almost half a year. From the initial discovery of the mass to final
diagnosis, the patient was exposed to multiple CT and bone scans,
chest x-rays and tissue biopsies. Undoubtedly he was forced to
endure much emotional turmoil and unnecessarily address end of
life issues.
This emphasizes the importance of obtaining an adequate biopsy
early, allowing the correct diagnosis to be established and
communicated to the patient. In order to ensure quality care, an
attitude of vigilance and dedication will aid us in maintaining
quality care as we investigate each clinical question to its complete
end.

REFERENCES
1. Utz JP, Swensen SJ, Gertz MA. Pulmonary amyloidosis. The Mayo Clinic
413.
2. Lachmann HJ, Goodman HJ, Gilbertson JA, et al. Natural history and
3. Husby G. Nomenclature and classification of amyloid and amyloidoses. J
4. Aylwin AC, Gishen P, Copley SJ. Imaging appearance of thoracic
5. Smith RR, Hutchins GM, Moore GW, Humphrey RL. Type and distribution
of pulmonary parenchymal and vascular amyloid. Correlation with cardiac
7. Guidelines Working Group of UK Myeloma Forum; British Committee for
Standards in Haematology, British Society for Haematology. Guidelines on
the diagnosis and management of AL amyloidosis. Br J Haematol 2004;125:
681–700.
8. Gillmore JD, Hawkins PN. Amyloidosis and the respiratory tract. Thorax
The importance of complete screening for amyloid fibril type and systemic
disease in patients with amyloidosis in the respiratory tract. Sarcoidosis Vasc
10. Picken MM. New insights into systemic amyloidosis: the importance of