INTRODUCTION

In the last decade, there has been new interest in promoting cycling as a mode of transportation in North America. Two of the largest cities in the United States, New York and Chicago, have set aggressive targets for increased cycling, and to meet them, have launched programs to construct connected networks of bicycle infrastructure. Canadian cities are also seeing changes, as illustrated in our three largest cities. Montreal has a system of separated bike lanes throughout its downtown core and implemented its pioneering BIXI bikeshare system in 2009. Toronto adopted the BIXI system in the summer of 2011, and is considering building separated lanes. Vancouver began installing separated lanes on major streets in its downtown core in 2009 as a complement to a system of designated bike routes elsewhere in the city.

The motivations for these changes are multifaceted. At the municipal level, they include the impossibility of managing traffic congestion via increased roadways, green city strategies aimed at reducing air pollution and greenhouse gases, and a recognition that the vitality of cities is better promoted by people who are not enclosed in vehicles, but walking, cycling, and interacting with each other. In the public health realm, “active transportation” (physically active travel modes such as walking and cycling) has become a focus of attention following research showing that the design of cities and the connectivity of streets affect both our likelihood of walking and our health. Canadians use active transport modes less than Europeans, so there is room for improvement. Bicycling offers the greatest opportunity for change. The percentage of trips via cycling in Canada (less than 2%) is very low in comparison to many northern European countries with similar climates and demographics. Cycling rates are five times higher in Finland, Germany, and Sweden, and ten or more times higher in Denmark and the Netherlands. In addition, cycling offers an efficient transportation mode for short distance trips not easily made on foot.

Despite the many motivations, promotion of cycling has been controversial. Some car users have been concerned about losing road space, and bike lanes have been a prominent issue in municipal elections in both Toronto and Vancouver. In addition, there is concern about safety by both members of the public and health professionals who have advocated helmet use. In this article, we focus on the health elements of the controversy: what are the potential benefits of cycling; what are the risks; and do the benefits outweigh the risks?

METHOD

This article provides an overview of the scientific literature on these issues, based on a search that employed the following bibliographic databases: Web of Science (http://apps.isiknowledge.com); PubMed (http://www.pubmed.gov); Transportation Research Information Services (http://tris.trb.org); and Google Scholar (http://scholar.google.com). Text word searches of article titles and abstracts were conducted using combinations of the following keywords: active transportation, cyclist, bicycling, physical activity, traffic, benefit, risk, cost, safety, health, injury, accident, air pollution, exposure, and noise. Reference lists of papers were reviewed and expert colleagues were asked to identify additional references that should be included. The initial literature search was conducted up to the end of March 2010, with a search for additional risk-benefit literature up to the end of November 2011.

All papers identified were screened for relevance using the title and/or abstract. English-language literature in the following areas was sought: studies that directly examined benefits and/or risks of cycling; where direct evidence was not available, studies that provided indirect evidence; papers that reviewed the above literature; and papers that addressed research challenges. Some of the literature grouped results for cycling and walking, since both are active modes of transportation. Where separate evidence was available for cycling, it was preferred; where evidence was only available for the two modes grouped, we have included it.
HEALTH BENEFITS OF CYCLING

Physical activity and health
Data from the Canadian Community Health Survey in 2005 showed that only 24% of adults were physically active, 35% were overweight, and 16% were obese.7 Obesity and physical inactivity are strongly related. The World Health Organization (WHO) listed them as two of the five leading global risks for mortality, responsible for 16.1% of deaths in high income countries.5 WHO estimated that obesity is responsible for the following global disease burdens: 44% of diabetes; 23% of ischemic heart disease; and 7 to 41% of certain cancers.8 Estimates for physical inactivity burdens were 27% of diabetes, 30% of ischemic heart disease, and 21 to 25% of breast and colon cancers.8

Data at the individual and population level show that cycling for transportation can increase physical activity and reduce weight. People who cycle or walk to work are more likely to be fit and less likely to be overweight or obese than those who use motorized modes.9 Data from national surveys of travel behaviour and health indicators show that countries with the highest levels of cycling and walking have the lowest obesity rates.10 Active transportation is effective because it provides a means for individuals to incorporate moderate intensity activities into their daily routines. This has been shown to be more sustainable over time than structured activity programs (e.g., running or going to the gym), yet has similar health benefits.11 This is supported by evidence that people who commute by active transport get more physical activity on average than people who use motorized transport.12,13 Thus, increasing cycling as a mode of transportation offers a promising way to address widespread levels of inactivity and overweight in the Canadian population.

Studies have also shown direct links between transportation–related physical activity and health outcomes. People who commute by bike or on foot experienced significant improvements in cardiovascular indicators of fitness compared to those who use motorized modes.14,15 Men who cycled at least 25 km per week had less than half the risk of non–fatal and fatal coronary heart disease of those who were not physically active.15 A study of physical activity and type 2 diabetes showed a 35% reduction in risk with at least 30 minutes per day of commuting by bike or on foot, a greater reduction than with physical activity during leisure time or at work.16 A recent meta–analysis concluded that cycling or walking to work was associated with an 11% reduction in cardiovascular disease risk.17 All–cause mortality has been found to be lower among men and women of all ages who cycled for transportation.18 A recent meta–analysis of physical activity and all–cause mortality found reductions with all types of physical activity, including active transportation, with greater reductions in mortality with more time spent cycling and walking.19

In addition to physical health, increased activity benefits mental health. A meta–analysis found that exercise as a treatment for depression was more effective than no treatment, was as effective as traditional interventions in some instances, and had equivalent adherence rates to medication.20 Regular activity at least once a week was associated with reduced risk of sleep disorders.21

The health issues associated with inactivity and obesity cause hardship for individuals but they also have substantial costs for society. The economic costs of physical inactivity and obesity in Canada in 2001 were estimated at $5.3 billion and $4.3 billion, respectively.22

Lower levels of air pollution, greenhouse gases, noise and congestion
One of the reasons that cities are promoting cycling is its potential to reduce air pollution and greenhouse gas emissions. Traffic–related air pollution is associated with increased non–accidental, lung cancer, and cardiovascular mortality.23 The potential effects of climate change on health are more wide ranging. Heat episodes are one example; they consistently result in increased cardiovascular and respiratory mortality, especially among the elderly.24 Cycling produces no in–use emissions and has low lifecycle greenhouse gas emissions.25,26 Because it does not produce any direct emissions, it is often cited as offering opportunities to improve air quality on a neighbourhood or regional scale.27,28 However, for such benefits to be realized, cycling needs to be a substitute for a significant proportion of motorized transportation, as it is in countries like the Netherlands and Denmark.29,30

Noise and congestion are additional negative consequences of motor vehicle traffic. In recent years, traffic noise has been shown to be an urban health risk that impacts childhood development and increases adult myocardial infarction and total ischemic heart disease risks.30,31 Traffic congestion is a significant economic issue, with impacts estimated at up to 3% of gross domestic product (GDP) for many cities.32 Cycling has been promoted as an approach for reducing both traffic noise and congestion,33,34 but to our knowledge there have been no studies verifying these potential benefits.

HEALTH RISKS OF CYCLING

Injury risk
Unfortunately, trips by bicycle face higher risks of fatality and injury per trip and per distance travelled than trips by automobile. In the United States from 1999 to 2003, the fatality rate per bike trip was about 2.3 times that for automobile trips, and the police-reported injury rate per bike trip was about 1.8 times that for automobile trips.34 The greater distances travelled on motor vehicle trips (bike trips are about half the distance of automobile. In the United States from 1999 to 2003, the fatality rate per bike trip was about 2.3 times that for automobile trips, and the police-reported injury rate per bike trip was about 1.8 times that for automobile trips.34 The greater distances travelled on motor vehicle trips (bike trips are about half the distance of motor vehicle trips) mean that the difference in risk per distance travelled would be greater still. Canadian data suggest a similar pattern. In 2006, there were 2125 deaths among motor vehicle drivers and passengers (74% of all traffic-related deaths), and 73 deaths among cyclists (2.5% of all traffic-related deaths).35 Census data in the same year indicated that 80% of trips to work were by car and 1.3% of trips to work were by bicycle,36 suggesting that proportionately more fatalities happen during travel by bicycle.

However, Canadian data over a 2-decade period provide encouraging news: traffic fatalities by all modes have declined at a steady pace, and cycling deaths appear to have declined at a slightly faster rate (Figures 1a and 1b).37,40

In addition, there is evidence that injury and fatality rates decrease as cycling mode share increases, an effect that has
been dubbed “safety in numbers”. In the Netherlands, where almost 30% of trips are by bicycle, the fatality risk was 1.1 per 100 million km cycled, versus 3.6 and 5.8 per 100 million km cycled in the UK and the US, respectively, where about 1% of trips are by bicycle. There remains concern that, with increased cycling mode share, there may be a net increase in the absolute number of traffic injuries, because of the shift from a lower risk to a higher risk mode of transport. However, Elvik suggested that if enough trips were converted from driving to cycling or walking, reductions in overall traffic fatalities might be observed, because of the safety in numbers effect and the lower volume of automobile traffic. This effect may be operating in the Netherlands; the overall traffic fatality rate in 2009 was much lower in the Netherlands (3.9/100,000 population) than in Canada (6.3/100,000 population).

Risk from exposure to air pollution
Although population-level reductions in air pollution have been suggested as a potential benefit of major shifts from driving to bicycling, air pollution exposure can present a risk to individual cyclists. Results of personal exposure studies are mixed. Cyclists generally experience lower exposures to fine and ultrafine particulate matter, volatile organic compounds, and carbon monoxide compared to those inside vehicles. The benefits of lower exposure levels may be offset to some degree by longer travel times and increased pollutant uptake due to increased respiratory ventilation, approximately 2 to 4 times that of motor-vehicle occupants. There is some evidence that cyclists may experience higher exposures than car drivers if they travel on busy routes. However, they can reduce their pollution exposure significantly by choosing low-traffic routes.

WEIGHING THE BENEFITS AND RISKS
One of the earliest efforts at quantifying the tradeoffs between benefits and risks of cycling was completed by the British Medical Association 20 years ago. It enumerated a benefit to risk ratio (years of life gained versus lost) of 20 to 1 and concluded that “in spite of the hostile environment in which most cyclists currently ride, the benefits in terms of health promotion and longevity far outweigh the loss of life years in injury on the roads.”

Over the last few years, a number of teams have synthesized more recent evidence. Table 1 summarizes the results of these studies, examining one North American setting and four European settings. All studies considered the benefits of increased physical activity, and all but one considered the risks of traffic injuries. All studies considered the impact of air pollution, though two considered its impact only on risk and two only on benefit. The benefits and risks were calculated in different ways (deaths prevented, reductions in disability-adjusted life years, and monetary costs of premature death).

The conclusions of all studies supported that of the British Medical Association: there is a large net health benefit of increased cycling, since the risk of fatal injury is greatly outweighed by the reductions in mortality afforded by increased physical activity. Air pollution risks and benefits had smaller impacts in either direction. Benefit to risk ratios ranged between 9 to 1 and 96 to 1.

The degree of uncertainty in the estimates was illustrated by some large differences between studies. This research area faces a number of methodological challenges: identifying the population affected by a change; assessing behaviour changes; and quantifying health outcomes. There are also potential risks and benefits that were not considered in the analyses to date: for

Figure 1a. Traffic collision fatalities by road user class, in Canada, 1988 to 2009.

Figure 1b. Trend in number of traffic collision fatalities in Canada indexed to 1988 (assigned 100), by road user class, 1988 to 2009.
If enough trips were converted from driving to cycling or walking, reductions in overall traffic fatalities might be observed.

example, skin cancer risk or increased vitamin D production from sun exposure; and the benefits associated with mitigation of global climate change. Rabl and de Nazelle made some initial estimates for non-fatal injuries, noise, and congestion. These suggested relatively minor increases in cost from non-fatal injuries and large benefits from reduced noise and congestion (comparable to those from increased physical activity).

REAPING THE BENEFITS, MANAGING THE RISKS

Given the substantial health benefits that accrue from bicycling as a mode of transportation, the new public health focus on promoting its use is well founded. It is also reasonable to promote means to mitigate any risks. A number of evidence-based strategies for managing risks exist. Cyclists can be encouraged to wear helmets, which reduce the chance of head and face injuries in the event of a crash. However, helmets do not prevent crashes from happening in the first place. The methods used to protect cyclists in the Netherlands, where helmet use is rare and injury rates are low, appear to have been successful in this regard. Their approach has been to construct bicycle-specific facilities, the design of which varies depending on motor vehicle traffic volumes and speeds. Typically, on major streets, “cycle tracks” are used to physically separate cyclists from faster (motor vehicle) and slower (pedestrian) traffic. On residential streets, motor vehicle traffic is restricted and kept slow, with speed limits of 30 km/h. A recent review and other emerging evidence show that bicycle-specific facilities (e.g., cycle tracks, residential street bike routes, on-road marked bike lanes, and off-road bike paths) reduce crashes and injuries to cyclists. Most of these route types are favoured by all types of people, from young men to older adults with children, from regular cyclists to those who are just considering cycling. They should help motivate cycling and thus help induce safety in numbers. In addition, route types separated from traffic are likely to have lower air pollution and noise exposures.

The good news is that developments in North American cities are much more focussed on creating favourable environments for cycling, similar to the Dutch model. Whether we reap the benefits depends on all of us.

ACKNOWLEDGEMENT

CCOR, FJR and MW acknowledge support from the University

<table>
<thead>
<tr>
<th>Authors</th>
<th>Location</th>
<th>Changes / effects being considered</th>
<th>Risk Estimate</th>
<th>Benefit Estimate</th>
<th>Balance of Risk and Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grabow et al, 2011 [27]</td>
<td>USA, 11 metropolitan areas in the mid-west</td>
<td>Conversion of 50% of automobile round trips of ≤8 km to cycling.</td>
<td>None evaluated</td>
<td>More physical activity: 687 fewer deaths. Reductions in ozone air pollution: 9 fewer deaths. Reductions in particulate air pollution: 433 fewer deaths.</td>
<td>Combined effect: 1,129 fewer deaths in 31.9 million population = 35 fewer deaths per million population per year. Benefit to risk ratio: cannot be calculated, no risks considered.</td>
</tr>
<tr>
<td>Woodcock et al., 2009 [28]</td>
<td>London, England</td>
<td>Increased active transportation: 2 times as much walking & 8 times as much cycling. Effects on cardiovascular disease, breast cancer, colon cancer, dementia, depression, and diabetes.</td>
<td>More traffic crashes: 11 more premature deaths and 519 fewer disability-adjusted life-years (DALYs) per million population.</td>
<td>More physical activity: 528 fewer premature deaths and 7,742 more DALYs per million population. Reductions in air pollution: 21 fewer premature deaths and 200 more DALYs per million population.</td>
<td>Combined effect: 530 fewer premature deaths and 7,332 more disability-adjusted life-years per million population per year. Benefit to risk ratio: ~49:1 for premature deaths; ~15:1 for DALYs</td>
</tr>
<tr>
<td>Johan de Hartog et al., 2010 [56]</td>
<td>Netherlands</td>
<td>500,000 adults switch from car to bicycle for trips < 7.5 km. Effect on life years.</td>
<td>More traffic crashes: loss of 9,639 life years. More air pollution inhaled: loss of 28,135 life years.</td>
<td>More physical activity: gain of 337,896 life years.</td>
<td>Combined effect: gain of 7 months of life per person = 583,333 years per million population over the life course. Benefit to risk ratio: ~9:1</td>
</tr>
<tr>
<td>Rojas-Rueda et al., 2011 [58]</td>
<td>Barcelona, Spain</td>
<td>181,982 subscribers to a public bike share program compared to car drivers. Effect on all cause mortality.</td>
<td>More traffic crashes: 0.03 more deaths. More air pollution inhaled: 0.13 more deaths.</td>
<td>More physical activity: 12.5 fewer deaths.</td>
<td>Combined effect: 12.3 fewer deaths per year = 67 fewer deaths per million population per year. Benefit to risk ratio: ~96:1</td>
</tr>
</tbody>
</table>
of British Columbia Bridge Program. This paper was based in part on an Evidence Review prepared for the National Collaborating Center for Environmental Health of the Public Health Agency of Canada:

REFERENCES

11. Dunn A, Marcus B, Kampert J, Garcia M, Kohl HR, Blair S. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. JAMA 1999;281:327-34.
A Low Carbohydrate, High Protein Diet May Extend Your Life and Reduce Your Chances of Getting Cancer

Victor W. Ho, BSca, Gerald Krystal, PhDbcd,e

aDepartment of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC
bTerry Fox Cancer Research Scientist of the NCI
cProfessor, Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC
dMember, Genetics, University of British Columbia, Vancouver, BC
eMember, Experimental Medicine, University of British Columbia, Vancouver, BC

When glucose in our blood enters our cells, it is broken down via glycolysis to pyruvate. Pyruvate can then be converted into lactic acid and secreted, ending glycolysis, or into acetyl-CoA and broken down, with the help of oxygen (O₂), within mitochondria to carbon dioxide (CO₂) and water via oxidative phosphorylation (OXPHOS, i.e., the Kreb’s Citric acid, or tricarboxylic acid cycle). In 1857, Louis Pasteur discovered that in the absence of O₂, normal cells survive by switching from OXPHOS, which generates 36 ATPs/glucose, to glycolysis, which only generates 2 ATPs/glucose. In the 1920s, Otto Warburg found that cancer (CA) cells, unlike normal cells, use glycolysis instead of OXPHOS even when O₂ is present, and this type of metabolism is called aerobic glycolysis or the Warburg effect. Because most tumours use this less efficient energy generating system, they have to take up more blood glucose (BG) than normal cells to survive. This characteristic is the basis for identifying human CAs using PET scans with 18-fluorodeoxyglucose, a glucose analog.

Importantly, every normal cell in our body is within 0.1 mm from a capillary, corresponding to the diffusion limit of O₂ and nutrients. However, glucose can diffuse slightly further than O₂, so when tumours grow beyond 0.1 mm, they can still acquire glucose and switch from OXPHOS to glycolysis by activating the transcription factor hypoxia inducible factor 1 (HIF1), which regulates over 70 different genes. Amongst the genes turned on are cell surface glucose transporters (to increase glucose uptake), angiogenic factors (to induce the formation of new blood vessels), and enzymes (to enhance glycolysis and inhibit OXPHOS). But why do CA cells still use glycolysis when O₂ is present? The answer is that many oncogenes, as well as inactivated tumour suppressors, activate HIF1.

Correspondence
Gerald Krystal, gkrystal@bccrc.ca

UBCMJ | MARCH 2012 3(2) | www.ubcmj.com